AI大模型与产品策略:产品经理的致胜之道

游客* 2024-03-27 11:25:32

AI大模型与产品策略:产品经理的致胜之道。随着AI大模型的快速进化,其生态的构建,已经从C端过度到了B端。

作为产品经理,我们应该及时响应大趋势,在产品策略上融入AI大模型模块,深度挖掘AI大模型的应用价值,这才是作为PM在现阶段最有价值的地方。

那么AI大模型对于企业来说,意味着什么呢?生产效率的提升?用户体验的提升?还是其他要素的提升?

我认为是让企业自身更加的智能化,能够灵活应对各种复杂业务。在激烈的竞争中,拥有对传统互联网企业进行降维打击的能力,因为AI大模型改变了原有的生产范式。

在前一段时间,我深入的研究了一下AI大模型的应用开发框架LangChain,通过对技术上的深入了解,来拓展自己的产品边界,今天就来做一下总结,希望对大家有所帮助。

一、AI大模型的企业级应用场景

围绕企业级应用挖掘AI大模型的应用场景,总的来说,分为2大类:组织管理、业务管理。

组织管理:偏协同,组织内外部的协同。在AI来临之前的组织协同,基本上是通过一套系统(OA、IM或其他办公协同系统),来管理所有的人员,完全的工具化,而大模型的出现将组织管理变得更加智能化、自动化。AI大模型的服务对象可以是一个团队、一个聊天群、一个员工、甚至是一个任务等等。

业务管理:偏效率,从业务分析、策略制定到产品设计、研发生产、风险控制等等,在提效方面非常显著,虽然短期内的效率提升不代表着总效用的增强,但是至少触发了先发优势,先发优势就代表着市场红利。

接下来,分享一些具体的、目前市面上已经实现的AI大模型应用场景:

1、舆情监控:目前AI大模型已经可以联网了,特别要提一下国内的“智谱清言”AI大模型GLM-4,能够根据你输入的指令检测全网最新的舆情消息,感兴趣的伙伴可以了解一下。

2、数据分析:不管是结构化、非结构化的数据(业务数据、行业报告、文章)都可以将其输入AI大模型进行分析,并得出相对全面的结论。

3、基于本地知识库的智能问答系统:可以利用AI大模型构建基于本地知识库的自动问答系统,对于企业来说这非常的重要,可以最大化的发挥企业过往的经验。

4、搜索增强RAG:利用检索到的相关信息通过AI大模型来辅助和增强后续的处理任务,如文本生成、问答系统或文档摘要等。

5、聊天客服机器人:使用AI大模型和代理,来实现能与业务系统进行交互且更具人性化的客服机器人。

6、私人助手:将个人的日程、聊天记录、待办事项等等输入给AI大模型型,一个完美且的私人助手就诞生了。

7、推理引擎:推理引擎可以分解为:观察-思考-决策/行动,3个环节,这正好是AI大模型所擅长的,所有利用AI大模型作为推荐系统、预测系统、风控系统的推理引擎再合适不过。

8、AIGC工作站:结合企业自身的生产需求,借助AI大模型的自动化内容生成能力,构建多模态(文字、图片、视频)的内容生产工作站。

当然AI大模型的应用场景不止这些,需要产研团队不断地挖掘,才能发挥出巨大的价值。对了,另外再多说一句,目前有计划借助AI大模型的应用开发框架实现以上应用,并在公众号开通一个专栏进行记录,欢迎大家多多关注。

二、AI大模型的应用开发流程

AI大模型既然有如此的潜力,那么如何借助AI大模型为企业赋能呢?接下来就来详细介绍一下。

应用AI大模型开发企业级应用,大致分为六个环节即:产品定义、产品设计、数据获取、数据嵌入、模型调用、结果输出/优化。从产品经理这个职能出发,可将其分解为以下几个步骤:

1、需求定义:基于业务场景和用户需求,明确产品目标和产品价值。

2、产品定义:基于需求内容,确定好产品的边界,以及量化指标,便于后期的效果评估。

3、模型预研:根据自身的业务特性和应用场景,以及资源情况,选择合适的模型,当然OpenAI的GPT模型效果是最优的,但是并未开源,需要根据Token付费。如果流量比较大的情况下,可以选择meta开源的Llama-2模型,或者其他的多模态模型。

4、产品设计:包括产品结构设计、数据流程设计、产品流程设计、以及功能设计等,这个就不用多说了,PM的常规操作。

5、数据收集:收集企业内部、外部数据,并将其按照功能模块划分成不同的数据集。

6、数据清洗:通过数据探索将收集到的数据进行降噪处理,尽可能的保障数据的干净。

7、数据分割:将清洗后的数据分割成合适大小的“数据块”,便于数据的向量嵌入。

8、数据嵌入:调用目标AI大模型Embeddings进行向量化处理,并存储到向量数据库中。

9、构建提示工程:针对不同的提问和任务,通过思维链的方式构建提供工程,此步骤的目的在于将问题或任务转化成对AI大模型更友好的输入。提示工程的原则包括以下几点(源自于Open AI的官方文档 GPT 最佳实践中给出的建议)。

① 写清晰的指示;

② 给模型提供参考(也就是示例);

③ 将复杂任务拆分成子任务;

④ 给GPT时间思考;

⑤ 使用外部工具;

⑥ 反复迭代问题;

10、数据检索:将输入/提示转化成向量,从向量数据库中检索出相关的片段。

11、模型调用:构建模型实例llm = model_del(model_name),当然这里可以通过代理设定规则,自动化的调用不同的模型。

12、结果输出:将输入和检索到的数据,作为参数传入llm(question, data)实例中,来获取结果,在获取结果时可以进行结果解析,结构化存储。

13、输出优化:对于输出的质量,需要通过产品的量化指标来进行分析,然后通过优化5~11这几个步骤来优化结果的输出。

其中前5个环节是作为产品经理需要完成的,后面几个环节需要产品经理深度参与配合业务、研发、测试团队来共同完成。下面来举个例子,以简化后的流程来快速让大家理解整个AI大模型应用开发的关键流程。

就拿一个本地知识库文档的构建来说吧,核心流程如下:

1、文档收集:将知识库相关的文档收集导一起,可以是非结构化的pdf、word文件,亦可是结构化存储的SQL数据。

2、文档加载:调用文档加载器,将收集到的文档加载为能够读取的形式。

3、文档分割:调用文本分割器,将收集到的文档,切分为指定大小的“文档块”。

4、文档嵌入:将这些分割后的文本转换成嵌入的形式,并将其存储在一个向量数据库中。可以调用OpenAI的Embeddings模型来将文档快映射成OpenAI模型可识别的空间向量,然后存储到本地的向量数据(使用OpenAI的Embeddings模型进行向量化文档,是为了在后续将问题和答案输入到)。

5、文档检索:从向量数据库中检索分割后的文档(例如通过比较余弦相似度,找到与输入 问题类似的嵌入片)。

6、结果输出:把问题和相似的嵌入片传递给语言模型(LLM),使用包含问题和检索到的分割的提示生成答案。

那么如何实现这个流程呢?就需要借助到一些AI大模型的应用开发框架,目前主流的框架是LangChain。在LangChain出现以前,想要实现上述流程,是一个很困难的事情,但是LangChain框架出现后,将这一系列流程进行了封装。

三、LangChain AI大模型应用开框架介绍

LangChain 是一个全方位的、基于大语言模型这种预测能力 的应用开发工具,它的灵活性和模块化特性使得处理语言模型变得极其简便,LangChain提供的模块化组件则允许你根据自己的需求定制和创建应用中的功能链条。

AI大模型应用开发框架LangChain,提供了6大模块,来帮助我们实现快速开发AI大模型应用:

模型(Models):各种类型的模型和模型集成,比如OpenAI 的 ChatGPT、Meta的Llama等等。

提示(Prompts):提示管理、提示优化和提示序列化,通过提示微调模型的语义理解,LangChain提供了多种提示模版,可以很方便的满足各种提示的重复调用。

记忆(Memory):用来保存和模型交互时的上下文状态。把历史对话信息存储在提示模板中,并作为新的提示内容在新一轮的对话过程中传递给模型。这就是记忆机制的原理。

索引(Indexes):用来结构化文档,以便和模型交互,包括:文档的载入、分割、向量化存储、文档检索等。

链(Chains):一系列对各种组件的调用。链在内部把一系列的功能进行封装,而链的外部则又可以组合串联。 链其实可以被视为LangChain中的一种基本功能单元,例如模型链就是其中最简单的链。

代理(Agents):决定模型采取哪些行动,执行并且观察流程,直到完成为止。代理就像一个多功能的接口,它能够接触并使用一套工具。根据用户的输入,代理会决定调用哪些工具。它不仅可以同时使用多种工具,而且可以将一个工具的输出数据作为另一个工具的输入数据。

LangChain为大型语言模型提供了一种全新的搭建和集成方式,正如乐高积木提供了无尽的创造可能。通过这个强大的框架,我们可以将复杂的技术任务简化,让创意和创新更加易于实现。

四、总结

本文粗略的总结了一下基于AI大模型的应用场景、开发流程,以及借助AI大模型应用开发框架的实现原理,让大家来初步的感受一下企业级AI大模型应用的全景图。

利用一些AI大模型的应用开发框架,使得企业应用AI大模型变得简单起来,重要的是结合自身的业务,通过AI大模型强化自身的竞争力。总之,基于AI大模型的应用开发往深的去研究,还是有很多可探索空间的。

另外,基于AI大模型的应用开发是一种新的应用开发思维方式,而不仅仅是一个工具。在AI大模型时代,比拼的还是精益求精的探索精神。得到一个输出的结果不难,难的是得到一个更优的结果,只有更优一点,才能在“卷”的时代突破重围。

声明:以上内容(如有图片或视频亦包括在内)为“游客*”用户上传并发布,墨思产品经理平台仅提供信息存储服务。

Notice: The above content (including the pictures and videos if any) is uploaded and published by the user, and this platform only provides information storage services.

相关推荐: